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Abstract

Significant research has been devoted to detecting people
in images and videos. In this paper we describe a human de-
tection method that augments widely used edge-based fea-
tures with texture and color information, providing us with
a much richer descriptor set. This augmentation results
in an extremely high-dimensional feature space (more than
170,000 dimensions). In such high-dimensional spaces,
classical machine learning algorithms such as SVMs are
nearly intractable with respect to training. Furthermore,
the number of training samples is much smaller than the
dimensionality of the feature space, by at least an order
of magnitude. Finally, the extraction of features from a
densely sampled grid structure leads to a high degree of
multicollinearity. To circumvent these data characteristics,
we employ Partial Least Squares (PLS) analysis, an effi-
cient dimensionality reduction technique, one which pre-
serves significant discriminative information, to project the
data onto a much lower dimensional subspace (20 dimen-
sions, reduced from the original 170,000). Our human de-
tection system, employing PLS analysis over the enriched
descriptor set, is shown to outperform state-of-the-art tech-
niques on three varied datasets including the popular INRIA
pedestrian dataset, the low-resolution gray-scale Daim-
lerChrysler pedestrian dataset, and the ETHZ pedestrian
dataset consisting of full-length videos of crowded scenes.

1. Introduction

Effective techniques for human detection are of special
interest in computer vision since many applications involve
people’s locations and movements. Thus, significant re-
search has been devoted to detecting, locating and tracking
people in images and videos. Over the last few years the
problem of detecting humans in single images has received
considerable interest. Variations in illumination, shadows,
and pose, as well as frequent inter- and intra-person occlu-
sion render this a challenging task. Figure 1 shows an image
of a particularly challenging scene with a large number of
persons, overlaid with the results of our system.

Two main approaches to human detection have been ex-
plored over the last few years. The first class of meth-

Figure 1. Image demonstrating the performance of our system in
a complex scene. The image (689 × 480 pixels) is scanned at 10
scales to search for humans of multiple sizes. We achieve mini-
mal false alarms even though the number of detection windows is
44, 996 (best visualized in color).

ods consists of a generative process where detected parts
of the human body are combined according to a prior hu-
man model. The second class of methods considers purely
statistical analysis that combine a set of low-level features
within a detection window to classify the window as con-
taining a human or not. The method presented in this paper
belongs to the latter category.

Dalal and Triggs [5] proposed using grids of Histograms
of Oriented Gradient (HOG) descriptors for human detec-
tion, and obtained good results on multiple datasets. The
HOG feature looks at the spatial distribution of edge orien-
tations. However, this may ignore some other useful sources
of information, thus leading to a number of false positive
detections such as the ones shown in Figure 2. Our analysis
shows that information such as the homogeneity of human
clothing, color, particularly skin color, typical textures of
human clothing, and background textures complement the
HOG features very well. When combined, this richer set of
descriptors helps improve the detection results significantly.

A consequence of such feature augmentation is an ex-
tremely high dimensional feature space (more than 170, 000
dimensions), rendering many classical machine learning
techniques such as Support Vector Machines (SVM) in-
tractable. In contrast, the number of samples in our train-
ing dataset is much smaller (almost 20 times smaller than
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Figure 2. False positives obtained when only edge information (us-
ing HOG features) is considered.

the dimensionality). Furthermore, our features are extracted
from neighboring blocks within a detection window, which
increases the multicollinearity of the feature set. The na-
ture of our proposed feature set makes an ideal setting for a
statistical technique known as Partial Least Squares (PLS)
regression [23]. PLS is a class of methods for modeling re-
lations between sets of observations by means of latent vari-
ables. Although originally proposed as a regression tech-
nique, PLS can be also be used as a class aware dimension-
ality reduction tool. We use PLS to project our high dimen-
sional feature vectors onto a subspace of dimensionality as
low as 20. In such low dimensional spaces, standard ma-
chine learning techniques such as quadratic classifiers and
SVMs can be used for our classification task.

Our proposed human detection approach outperforms
state-of-the-art approaches on multiple standard datasets.
Since the number of detection windows within an image is
very high (tens of thousands for a 640×480 image scanned
at multiple scales), it is crucial to obtain good detection re-
sults at very small false alarm rates. On the popular INRIA
person dataset [5], we obtain superior results at false alarm
rates as low as 10−5 and 10−6 false positives per window
(FPPW). We also test on the ETHZ pedestrian dataset [7]
consisting of full-length videos captured in crowded scenes.
Even though we do not retrain our human detector us-
ing the provided training set (but use the detector trained
on the INRIA training set), our method outperforms other
approaches that utilize many more sources of information
such as depth maps, ground-plane estimation, and occlusion
reasoning [7]. Finally, we also demonstrate our method on
detecting humans at very low resolutions (18 × 36 pixels)
using the DaimlerChrysler dataset [18].

2. Related Work

The work of Dalal and Triggs [5] is notable because it
was the first paper to report impressive results on human de-
tection. Their work uses HOG as low-level features, which
were shown to outperform features such as wavelets [16],
PCA-SIFT [11] and shape contexts [2].

To improve detection speed, Zhu et al. [28] propose a
rejection cascade using HOG features. Their method con-
siders blocks of different sizes, and to train the classifier for
each stage, a small subset of blocks is selected randomly.
Also based on HOG features, Zhang et al. [27] propose
a multi-resolution framework to reduce the computational
cost. Begard et al. [1] address the problem of real-time
pedestrian detection by considering different implementa-
tions of the AdaBoost algorithm.

Using low-level features such as intensity, gradient, and
spatial location combined by a covariance matrix, Tuzel et
al. [22] improve the results obtained by Dalal and Triggs.
Since the covariance matrices do not lie in a vector space,
the classification is performed using LogitBoost classifiers
combined with a rejection cascade designed to accommo-
date points lying on a Riemannian manifold. Mu et al. [17]
propose a variation of local binary patterns to overcome
some drawbacks of HOG, such as lack of color informa-
tion. Chen and Chen [4] combine intensity-based rectan-
gle features and gradient-based features using a cascaded
structure for detecting humans. Applying combination of
edgelets [25], HOG descriptors [5], and covariance descrip-
tors [22], Wu and Nevatia [26] describe a cascade-based
approach where each weak classifier corresponds to a sub-
region within the detection window from which different
types of features are extracted. Dollar et al. [6] propose a
method to learn classifiers for individual components and
combine them into an overall classifier. The work of Maji
et al. [14] uses features based on a multi-level version of
HOG and histogram intersection kernel SVM based on the
spatial pyramid match kernel [12].

Employing part-based detectors, Mikolajczyk et al. [15]
divide the human body into several parts and apply a cas-
cade of detectors for each part. Shet and Davis [20] apply
logical reasoning to exploit contextual information, aug-
menting the output of low-level detectors. Based on de-
formable parts, Felzenszwalb et al. [9] simultaneously learn
part and object models and apply them to person detection,
among other applications. Tran and Forsyth [21] use an ap-
proach that mixes a part-based method and a subwindow-
based method into a two stage method. Their approach first
estimates a possible configuration of the person inside the
detection window, and then extracts features for each part
resulting from the estimation. Similarly, Lin and Davis [13]
propose a pose-invariant feature extraction method for si-
multaneous human detection and segmentation, where de-
scriptors are computed adaptively based on human poses.

3. Proposed Method

Previous studies [14, 22, 26] have shown that signifi-
cant improvement in human detection can be achieved us-
ing different types (or combinations) of low-level features.
A strong set of features provides high discriminatory power,
reducing the need for complex classification methods.

Humans in standing positions have distinguishing char-
acteristics. First, strong vertical edges are present along the
boundaries of the body. Second, clothing is generally uni-
form. Clothing textures are different from natural textures
observed outside of the body due to constraints on the man-
ufacturing of printed cloth. Third, the ground is composed
mostly of uniform textures. Finally, discriminatory color
information is found in the face/head regions.

Thus, edges, colors and textures capture important cues
for discriminating humans from the background. To cap-
ture these cues, the low-level features we employ are the
original HOG descriptors with additional color information,
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called color frequency, and texture features computed from
co-occurrence matrices.

To handle the high dimensionality resulting from the
combination of features, PLS is employed as a dimension-
ality reduction technique. PLS is a powerful technique
that provides dimensionality reduction for even hundreds
of thousands of variables, accounting for class labels in the
process. The latter point is in contrast to traditional dimen-
sionality reduction techniques such as Principal Component
Analysis (PCA).

The steps performed in our detection method are the
following. For each detection window in the image, fea-
tures extracted using original HOG, color frequency, and
co-occurrence matrices are concatenated and analyzed by
the PLS model to reduce dimensionality, resulting in a low
dimensional vector. Then, a simple and efficient classifier is
used to classify this vector as either a human or non-human.
These steps are explained in the following subsections.

3.1. Feature Extraction

We decompose a detection window, di, into overlapping
blocks and extract a set of features for each block to con-
struct the feature vector vi.

To capture texture, we extract features from co-
occurrence matrices [10], a method widely used for texture
analysis. Co-occurrence matrices represent second order
texture information - i.e., the joint probability distribution
of gray-level pairs of neighboring pixels in a block. We
use 12 descriptors: angular second-moment, contrast, cor-
relation, variance, inverse difference moment, sum average,
sum variance, sum entropy, entropy, difference variance,
difference entropy, and directionality [10]. Co-occurrence
features are useful in human detection since they provide
information regarding homogeneity and directionality of
patches. In general, a person wears clothing composed of
homogeneous textured regions and there is a significant dif-
ference between the regularity of clothing texture and back-
ground textures.

Edge information is captured using histograms of ori-
ented gradients. HOG captures edge or gradient structures
that are characteristic of local shape [5]. Since the his-
tograms are computed for regions of a given size within the
detection window, HOG is robust to some location variabil-
ity of body parts. HOG is also invariant to rotations smaller
than the orientation bin size.

The last type of information captured is color. Although
colors may not be consistent due to variability in cloth-
ing, certain dominant colors are more often observed in hu-
mans, mainly in the face/head regions. In order to incorpo-
rate color we used the original HOG to extract a descriptor
called color frequency. In HOG, the orientation of the gra-
dient for a pixel is chosen from the color band correspond-
ing to the highest gradient magnitude. Some color informa-
tion is captured by the number of times each color band is
chosen. Therefore, we construct a three bin histogram that
tabulates the number of times each color band is chosen. In
spite of its simplicity, experimental results have shown that

color frequency increases detection performance.
Once the feature extraction process is performed for all

blocks inside a detection window di, features are concate-
nated creating an extremely high-dimensional feature vec-
tor vi. Then, vi is projected onto a set of weight vectors
(discussed in the next section), which results in a low di-
mensional representation that can be handled by classifica-
tion methods.

3.2. Partial Least Squares for Dimension Reduction

Partial least squares is a method for modeling relations
between sets of observed variables by means of latent vari-
ables. The basic idea of PLS is to construct new predic-
tor variables, latent variables, as linear combinations of the
original variables summarized in a matrix X of descrip-
tor variables (features) and a vector y of response variables
(class labels). While additional details regarding PLS meth-
ods can be found in [19], a brief mathematical description
of the procedure is provided below.

Let X ⊂ R
m denote an m-dimensional space of feature

vectors and similarly let Y ⊂ R be a 1-dimensional space
representing the class labels. Let the number of samples be
n. PLS decomposes the zero-mean matrix X (n ×m) and
zero-mean vector y (n× 1) into

X = TP T + E

y = UqT + f

where T and U are n × p matrices containing p extracted
latent vectors, the (m× p) matrix P and the (1× p) vector
q represent the loadings and the n × m matrix E and the
n × 1 vector f are the residuals. The PLS method, using
the nonlinear iterative partial least squares (NIPALS) algo-
rithm [23], constructs a set of weight vectors (or projection
vectors) W = {w1,w2, . . . wp} such that

[cov(ti,ui)]2 = max
|wi|=1

[cov(Xwi,y)]2

where ti is the i-th column of matrix T , ui the i-th col-
umn of matrix U and cov(ti,ui) is the sample covariance
between latent vectors ti and ui. After the extraction of
the latent vectors ti and ui, the matrix X and vector y are
deflated by subtracting their rank-one approximations based
on ti and ui. This process is repeated until the desired num-
ber of latent vectors had been extracted.

The dimensionality reduction is performed by projecting
the feature vector vi, extracted from a detection window di,
onto the weight vectors W = {w1,w2, . . . wp}, obtaining
the latent vector zi (1 × p) as a result. This vector is used
in classification.

The difference between PLS and PCA is that the former
creates orthogonal weight vectors by maximizing the co-
variance between elements in X and y. Thus, PLS not only
considers the variance of the samples but also considers the
class labels. Fisher Discriminant Analysis (FDA) is, in this
way, similar to PLS. However, FDA has the limitation that
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after dimensionality reduction, there are only c − 1 mean-
ingful latent variables, where c is the number of classes be-
ing considered. Additionally, when the number of features
exceeds the number of samples, the covariance estimates
do not have full rank and the weight vectors cannot be ex-
tracted.

3.3. Speed Issues

Although detection results can be improved by utilizing
overlapping blocks for low-level feature extraction within
the detection window, the dimensionality of the feature vec-
tor becomes extremely high. As a result, the speed of
the human detector decreases significantly due to the time
needed to extract features and project them.

To overcome this problem, we employ a two-stage ap-
proach. In a fast first stage, based on a small number
of features, the majority of detection windows (those with
low probability of containing humans) are discarded. The
remaining windows are evaluated during a second stage
where the complete set of features allows challenging sam-
ples to be correctly classified.

The reduced set of features used during the first stage
is obtained by selecting representative blocks within the
detection window. We use a PLS-based feature selection
method called variable importance on projection (VIP) [24]
to do this. VIP provides a score for each feature, so that
it is possible to rank the features according to their predic-
tive power in the PLS model (the higher the score the more
importance a feature presents). VIP for the j-th feature is
defined as

VIPj =

√√√√m

p∑
k=1

b2
kw2

jk/

p∑
k=1

b2
k

where m denotes the number of features, wjk is the j-th
element of vector wk, and bk is the regression weight for
the k-th latent variable, bk = uT

k tk.
The speed improvements are twofold: (i) reducing the

overall number of feature computations; (ii) reducing the
time to create the data structure for a block, i.e. computing
a co-occurrence matrix from which features are extracted.
If features were selected individually, then a data structure
might need to be constructed for a block to compute only
one feature. To avoid that, we select features based on
blocks. This way, data structures for a block are only built if
several features within the block present some importance.

To obtain the relative discriminative power among
blocks we build a PLS model for each block, from which
only the first latent variable is considered (since PLS con-
siders class labels, the first latent variable can be used as a
clue about how well that block contributes to the detection).
A global PLS model is built using as input only the first la-
tent variable of every block. Then, VIP scores are computed
with respect to this PLS model, in this way, blocks can be
ranked according to their importance in detection. Finally,
the features used in the first stage of our approach are those
computed from blocks having high rank.

4. Experiments

We now present experiments to evaluate several aspects
of our proposed approach. First, we demonstrate the need
for dimensionality reduction and the advantages of using
PLS for this purpose. Second, we evaluate the features used
in our system. Third, we compare various classifiers that
can be used to classify the data in the low dimensional
subspace. Fourth, we discuss the computational cost of
our method. Finally, we compare the proposed system to
state-of-the-art algorithms on several datasets considering
cropped as well as full images.

Experimental Setup. For co-occurrence feature extrac-
tion we use block sizes of 16 × 16 and 32 × 32 with shifts
of 8 and 16 pixels, respectively. We work in the HSV color
space. For each color band, we create four co-occurrence
matrices, one for each of the (0◦, 45◦, 90◦, and 135◦) di-
rections. The displacement considered is 1 pixel and each
color band is quantized into 16 bins. 12 descriptors men-
tioned earlier are then extracted from each co-occurrence
matrix. This results in 63, 648 features.

We calculate HOG features similarly to Zhu et al. [28],
where blocks with sizes ranging from 12 × 12 to 64 × 128
are considered. In our configuration there are 2, 748 blocks.
For each block, 36 features are extracted, resulting in a to-
tal of 98, 928 features. In addition, we use the same set of
blocks to extract features using the color frequency method.
This results in three features per block, and the total number
of resulting features is 8, 244. Aggregating across all three
feature channels, the feature vector describing each detec-
tion window contains 170, 820 elements.

We estimate the parameters of our system using a 10-fold
cross-validation procedure on the training dataset provided
by INRIA Person Dataset [5]. The INRIA person dataset
provides a training dataset containing 2416 positive samples
of size 64 × 128 pixels and images containing no humans,
used to obtain negative exemplars. We sample this set to
obtain our validation set containing 2000 positive samples
and 10000 negative samples. In sections 4.1 to 4.4 our ex-
periments are performed using the INRIA person dataset.

Experimental results using INRIA Person Dataset are
presented using detection error tradeoff (DET) curves on
log-log scales. The x-axis corresponds to false posi-
tives per window (FPPW), defined by FalsePos/(TrueNeg
+ FalsePos) and the y-axis shows the miss rate, defined
by FalseNeg/(FalseNeg + TruePos). To clarify the results
shown throughout the paper, curves where the lowest FPPW
is 10−4 are obtained using the training data, while curves
where the lowest FPPW is 10−6 are obtained using the test-
ing data.

All experiments were conducted on an Intel Xeon 5160,
3 GHz dual core processor with 8GB of RAM running
Linux operating system.

4.1. Dimensionality Reduction

PLS+QDA Vs SVM. We first examine the feasibility
of applying support vector machines (SVM) directly on

27



−0.04 −0.03 −0.02 −0.01 0 0.01 0.02
−0.02

−0.01

0

0.01

0.02

0.03
First two dimensions for PCA

first dimension

se
co

nd
 d

im
en

si
on

non−human
human

(a) PCA - first two dimensions

−0.02 −0.01 0 0.01 0.02 0.03
−0.03

−0.02

−0.01

0

0.01

0.02

0.03
First two dimensions for PLS

first dimension

se
co

nd
 d

im
en

si
on

non−human
human

(b) PLS - first two dimensions

10
−4

10
−3

10
−2

10
−1

0.01

0.02

0.05

0.1

0.2

0.5
Detection Error Tradeoff

false positive per window (FPPW)

M
is

s 
R

at
e

10
20
30
50
80
100
120
140
160
180
200

(c) PCA - cross-validation

10
−4

10
−3

10
−2

10
−1

0.01

0.02

0.05

0.1

0.2

0.5
Detection Error Tradeoff

false positive per window (FPPW)

m
is

s 
ra

te
2
4
10
15
20
25
30
35
40
60

(d) PLS - cross-validation

Figure 3. Comparison of PCA and PLS for dimensionality reduc-
tion. (a-b) projection of the first two dimensions of the training
samples for one of the models learned in the cross-validation. (c-
d) DET curves according to the number of dimensions used to train
the classifier (best visualized in color).

the high dimensional feature space (170, 820 features per
sample). Table 1 shows the comparison between time re-
quired to train a linear SVM and the time required to train
a PLS model along with a Quadratic Discriminant Analy-
sis (QDA) model (we use the QDA classifier, but in later
subsections we provide a comparison to other classifiers as
well). We used the LIBSVM [3] package for this purpose.
As the number of training samples is increased, the training
time also increases. For more than 1800 samples we were
unable to train a linear SVM since the procedure ran out of
memory. In addition, the computational cost to learn a PLS
model and train a QDA classifier is an order of magnitude
smaller than the cost for training an SVM. These results
indicate that for such a high dimensional space, it is more
suitable to project the data onto a low dimensional subspace
and then learn a classifier.

# samples PLS + QDA SVM
200 23.63 131.72
600 62.62 733.63
1000 97.38 1693.50
1400 135.81 2947.51
1800 174.57 4254.63
2200 213.93 -
11370 813.03 -

Table 1. Time, in seconds, to train SVM and PLS + QDA models.
The number of features per sample is 170,820. The training time
increases with an increase in the number of training samples.

PLS Vs PCA. We now establish a baseline using Princi-
pal Component Analysis (PCA) to perform linear dimen-
sionality reduction and compare its results to PLS. Fig-
ures 3(c) and (d) show the DET curves obtained for a QDA
classifier in the PCA subspace as well as in the PLS sub-
space. It is interesting to note that while the best results
are obtained by using the first 20 PLS latent variables, the

performance of the system drops when the number of latent
variables is increased beyond 20. This can be attributed to
overfitting of the data caused by using a larger number of
latent variables. The results achieved while using the first
20 latent variables are the best results obtained over both
subspaces (0.8% miss rate at 10−4 FPPW). The best perfor-
mance on the PCA subspace is obtained for a dimensional-
ity of 180 (1.8% miss rate at 10−4 FPPW).

As the dimensionality of the subspace increases, the
time required to project the high dimensional feature vec-
tors onto the low dimensional space also increases. On our
computer, projecting the feature vector for a single window
onto a 180 dimensional PCA subspace takes 0.0264 sec-
onds while it takes 0.0032 seconds to project onto the 20
dimensional PLS subspace. Since an image contains sev-
eral thousand windows, a computational cost of 0.0264 sec-
onds/window is substantially worse than that for PLS. Thus,
in addition to the superior performance, the computational
cost of projection makes PLS more suitable for our applica-
tion than PCA. Figure 3(a) and (b) show the training dataset
projected onto the first two dimensions for PLS and PCA.
PLS clearly achieves better class separation than PCA.

4.2. Feature Evaluation

Comparing features. Figure 4(a) shows the results of
the three classes of features used in our system as well as
the combined performance. We show results combining the
HOG and color frequency features to demonstrate the pos-
itive contribution of the color features. A significant im-
provement is achieved when all features are combined.

Analysis of the PLS Weight Vectors. In this experi-
ment, we perform an analysis of the contribution of each
feature channel based on the weights of the PLS weight
vectors used to project the features onto the low dimen-
sional subspace. We use the same idea as described in Sec-
tion 3.3. For a given block in the detection window, we
create a PLS model for each feature channel. Then, us-
ing only the first latent variable for every block, we learn
a global PLS model. Figure 5 shows the weights for the
first five projection vectors of this global PLS model. The
features considered are HOG, co-occurrence extracted from
color bands H, S and V, and the color frequency.

Figure 5 shows how each feature channel (edge, texture,
color) provides information from different regions within
the detection window. This supports our claim that the con-
sidered features complement each other, leading to an im-
provement over single-feature-based methods. For exam-
ple, the first weight vector of the HOG feature set captures
information about the body shape due to the presence of
edges. Co-occurrence matrix features from color band H
extract information around the body silhouette. Color bands
S and V provide information about the head and homoge-
neous parts inside the body, respectively. Except for the first
weight vector, color frequency features are able to identify
regions located in the head due to similarity of the dominant
colors in that region (skin color).
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Figure 4. (a) results obtained by using different features and combination of all three feature channels used by this work; (b) comparison
of several classification methods for the low dimensional PLS subspace; (c) results after adding two stages compared to results obtained
without speed optimization.

Figure 5. Weight vectors for different features within the detection
window. Red indicates high importance, blue low (the plots are in
the same scale and normalized to interval [0, 1]).

4.3. Classification in Low Dimensional Space

To evaluate the classification in the low dimensional sub-
space, we compare the performance of several classifiers
using the 10-fold cross-validation described earlier. Fig-
ure 4(b) shows the results. According to the results, QDA
classifier, kernel SVM and linear SVM achieved compara-
ble performance in low dimensional subspace. Due to its
simplicity, we have chosen to use QDA in our system. PLS
tends to produce weight vectors that provide a good separa-
tion of the two classes for the human detection problem, as
shown in Figure 3(b). This enables us to use simple classi-
fiers in the low dimensional subspace.

4.4. Computational Cost

We accelerate the process using the two-stage approach
described in Section 3.3. To reduce the number of fea-

tures computed in the first stage, we rank blocks accord-
ing to their VIP scores and then select only those features in
blocks with higher rankings. Using 10-fold cross-validation
in the training set, we select a subset of blocks containing
3, 573 features per detection window, together with a proba-
bility threshold to decide whether a detection window needs
to be considered for the second stage.

It is important to note that the use of the first stage alone
achieves poor results for low false alarm rates. Therefore,
for the detection windows not discarded in the first stage
(approximately 3% for the INRIA person dataset), the com-
plete feature set is computed. For the testing set of the IN-
RIA person dataset, the results shown in Figure 4(c) indi-
cate no degradation in performance at low false alarm rates
when the two-stage approach is used, as compared to com-
puting the full set of features for all detection windows. Af-
ter speeding the process up using our two-stage method, we
were able to process 2929 detection windows per second.

4.5. Evaluation and Comparisons

In this section we evaluate the proposed system on dif-
ferent datasets and compare it to state-of-the-art methods.

INRIA Person Dataset. The INRIA person dataset [5]
provides both training and testing sets containing posi-
tive samples of size 64 × 128 pixels and negatives images
(containing no humans). To estimate weight vectors (PLS
model) and train the quadratic classifier we employ the fol-
lowing procedure. First, all 2416 positive training samples
and 5000 of the negative detection windows, sampled ran-
domly from training images, are used. Once the first model
is created, we use it to classify negative windows in the
training set. The misclassified windows are added into the
5000 negative windows and a new PLS model and new clas-
sifier parameters are estimated. This process is repeated a
few times and takes approximately one hour. Our final PLS
model considers 8954 negative and 2416 positive samples,
using 20 weight vectors (as discussed in section 4.1).

Figure 6(a) compares results obtained by the proposed
approach to methods published previously. Our results were
obtained using 1126 positive testing samples and by shift-
ing the detection windows by 8 pixels in the negative testing
images, all of which are available in the dataset. While we
were able to run the implementations for methods [5, 22],
curves for methods [6, 13, 14, 26] were obtained from their

29



10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.01

0.02

0.05

0.1

0.2

0.5
Detection Error Tradeoff

false positives per window (FPPW)

m
is

s 
ra

te

our approach
Lin & Davis [13]
Tuzel et al. [22]
Dalal & Triggs [5]
Maji et al. [14]
Wu, Nevatia [26]
Dollar et al. [6]

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1
Receiver Operating Characteristic

false positive rate

de
te

ct
io

n 
ra

te

our approach
Maji et al. [14]
Munder, Gavrila [18]

0 1 2 3 4 50.5 1.5 2.5 3.5 4.54.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positives per image (FPPI)

re
ca

ll

Seq. #1 (999 frames, 5193 annotations)

Ess et al. [7]
our method
Ess et al. [8]

0 1 2 3 4 50.5 1.5 2.5 3.5 4.54.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positives per image (FPPI)

re
ca

ll

Seq. #2 (450 frames, 2359 annotations)

Ess et al. [7]
our method

0 1 2 3 4 50.5 1.5 2.5 3.5 4.54.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positives per image (FPPI)

re
ca

ll

Seq. #3 (354 frames, 1828 annotations)

Ess et al. [7]
our method

INRIA Pedestrian Dataset DaimlerChrysler Dataset ETHZ Pedestrian Dataset

Ex
am

pl
e T

ru
e 

D
et

ec
tio

ns
Pe

rfo
rm

an
ce

 E
va

lu
at

io
n

(a) (b) (c) (e)(d)

Figure 6. Evaluation of our method on multiple pedestrian datasets. First row shows performance and comparisons with state-of-the-art
methods. Second row shows some sample true detections for each dataset (best visualized in color).

reported results. The PLS approach outperforms all meth-
ods in regions of low false alarm rates, i.e. 5.8% miss rate
at 10−5 FPPW and 7.9% miss rate at 10−6 FPPW.

DaimlerChrysler Pedestrian Dataset. This dataset
provides grayscale samples of size 18× 36 pixels [18]. We
adapt our feature extraction methods for these image char-
acteristics as follows. For co-occurrence feature extraction,
we use block sizes of 8×8 and 16×16 with shifts of 2 pix-
els for both. Co-occurrence matrices are estimated using the
brightness channel quantized into 16 bins. For HOG feature
extraction, we adopt the same approach used for the INRIA
person dataset; however, block sizes now range from 8× 8
to 18 × 36. Due to the lack of color information, the color
frequency feature cannot be considered in this experiment.

The DaimlerChrysler dataset is composed of five disjoint
sets, three for training and two for testing. To obtain results
that can be compared to those presented by Maji et al. [14]
and by Munder and Gavrila [18], we report results by train-
ing on two out of three training sets at a time. Therefore,
we obtain six curves from which the confidence interval
of the true mean detection rate is given by the t(α/2,N−1)

distribution with desired confidence of 1 − α = 0.95 and
N = 6. The boundaries of this interval are approximated
by y± 1.05s, where y and s denote the estimated mean and
standard deviation, respectively [18].

Figure 6(b) compares results obtained by the proposed
method to results reported in [14, 18]. In contrast to pre-
vious graphs, this shows detection rates instead of miss
rates on the y-axis and both axes are shown using linear
scales. Similar to experiments conducted on the INRIA per-
son dataset, the results obtained with the proposed method
show improvements in regions of low false alarm rates.

ETHZ Dataset. We evaluate our method for un-cropped
full images using the ETHZ dataset [7]. This dataset pro-
vides four video sequences, one for training and three for
testing (640×480 pixels at 15 frames/second). Even though
a training sequence is provided, we do not to use it; instead
we use the same PLS model and QDA parameters learned
on the INRIA training dataset. This allows us to evalu-

ate the generalization capability of our method to different
datasets.

For this dataset we use false positives per image (FPPI)
as the evaluation metric, which is more suitable for evalu-
ating the performance on full images [21]. Using the same
evaluation procedure described in [7] we obtain the results
shown in Figure 6(c), (d) and (e) for the testing sequences
provided. We use only the images provided by the left cam-
era and perform the detection for each single image at 11
scales without considering any temporal smoothing. We
do not train our detector on the provided training set and
we do not use any additional cues such as depth maps,
ground-plane estimation, and occlusion reasoning, all of
which are used by [7]. Yet, our detector outperforms the
results achieved by [7] in all three video sequences.

The work by Ess et al. [8] also considers sequence #1
in their experiments, so we have added their results in Fig-
ure 6(c). Even though [8] uses additional cues such as track-
ing information, our method, trained using the training set
of INRIA dataset, achieves very similar detection results.

Additional Set of Images. We present some results in
Figure 7 for a few images obtained from INRIA testing
dataset and Google. These results were also obtained using
the same PLS model and QDA parameters learned on the
INRIA training dataset. We scan each image at 10 scales.
Despite the large number of detection windows considered,
the number of false alarms produced is very low.

5. Conclusions

We have proposed a human detection method using a
richer descriptor set including edge-based features, texture
measures and color information, obtaining a significant im-
provement in results. The augmentation of these features
generates a very high dimensional space where classical
machine learning methods are intractable. The character-
istics of our data make an ideal setting for applying PLS
to obtain a much lower dimensional subspace where we use
simple and efficient classifiers. We have tested our approach
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(a) 640 × 480 (41,528 det. windows) (b) 1632 × 1224 (389,350 det. windows) (c) 1600 × 1200 (373,725 det. windows)

Figure 7. Results obtained from images containing people of different sizes and backgrounds rich in edge information. The image size and
the total number of detection windows considered are indicated in the caption (best visualized in color).

on a number of varied datasets, demonstrated its good gen-
eralization capabilities and shown it to outperform state-of-
the-art methods that use additional cues.
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